Identification and control of dynamical systems using neural networks

نویسندگان

  • Kumpati S. Narendra
  • Kannan Parthasarathy
چکیده

It is demonstrated that neural networks can be used effectively for the identification and control of nonlinear dynamical systems. The emphasis is on models for both identification and control. Static and dynamic backpropagation methods for the adjustment of parameters are discussed. In the models that are introduced, multilayer and recurrent networks are interconnected in novel configurations, and hence there is a real need to study them in a unified fashion. Simulation results reveal that the identification and adaptive control schemes suggested are practically feasible. Basic concepts and definitions are introduced throughout, and theoretical questions that have to be addressed are also described.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DISTURBANCE REJECTION IN NONLINEAR SYSTEMS USING NEURO-FUZZY MODEL

The problem of disturbance rejection in the control of nonlinear systems with additive disturbance generated by some unforced nonlinear systems, was formulated and solved by {itshape Mukhopadhyay} and {itshape Narendra}, they applied the idea of increasing the order of the system, using neural networks the model of multilayer perceptron on several systems of varying complexity, so the objective...

متن کامل

Dynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks

Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...

متن کامل

Adaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks

This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...

متن کامل

Synchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control

In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...

متن کامل

PROJECTED DYNAMICAL SYSTEMS AND OPTIMIZATION PROBLEMS

We establish a relationship between general constrained pseudoconvex optimization problems and globally projected dynamical systems. A corresponding novel neural network model, which is globally convergent and stable in the sense of Lyapunov, is proposed. Both theoretical and numerical approaches are considered. Numerical simulations for three constrained nonlinear optimization problems a...

متن کامل

Identification and Control of Non-linear Dynamical Systems Using Neural Networks

Identification and Control of Non-linear dynamical systems is a challenging probelm to the control engineers. The function approximation capability of artificial neural networks can be very effective in designing efficient system idnetification models and controllers for non-linear systems. Narendra and Parthsarathy [1] has suggested models for both identification and control of non-linear syst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 1 1  شماره 

صفحات  -

تاریخ انتشار 1990